

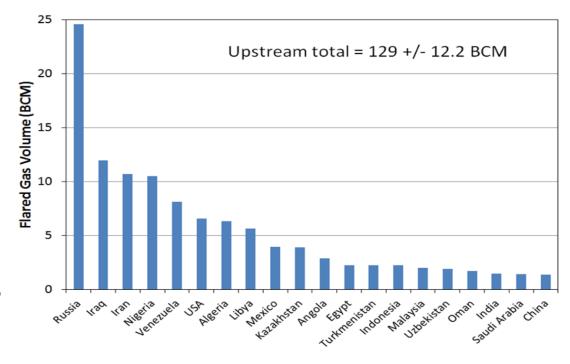
ОПЕРАТИВНЫЙ МОНИТОРИНГ ОБЪЕМА СЖИГАЕМОГО ПОПУТНОГО НЕФТЯНОГО ГАЗА В ФАКЕЛЬНЫХ УСТАНОВКАХ НА ОСНОВЕ СПУТНИКОВЫХ ДАННЫХ

Центр космического мониторинга
 Алтайского государственного университета

СЖИГАНИЕ ПОПУТНОГО ГАЗА – ГЛОБАЛЬНАЯ ЭКОЛОГИЧЕСКАЯ ПРОБЛЕМА

*****по данным
National Oceanic and Atmospheric Administration (NOAA)

13 605 факельных установок в


88 странах мира

Россия - лидер по объему сжигаемого попутного газа

В факельных установках ежегодно:

- сжигается более **140** миллиардов кубометров газа
- выбрасывается в атмосферу порядка **300** миллионов тонн **CO₂**

Elvidge C.D., Zhizhin M., Baugh K. et al. Methods for global survey of natural gas flaring Visible Infrared Imaging Radiometer Suite data // Energies, 2016.

Мониторинг атмосферы и подстилающей поверхности в районе расположения факельных установок

Дистанционный контроль периода работы факельных установок

Мониторинг температуры факела как индикатора состава сжигаемой газовой смеси

Определение объема сжигаемого попутного нефтяного газа в факельных установках

Центр создан в 2002 году

Сегодня Центр принимает и обрабатывает в оперативном режиме данные 9 радиометров, покрывающих видимый, инфракрасный и СВЧ-диапазоны, с 4 спутниковых платформ

По заказу Правительства Алтайского края и регионального управления МЧС России Центр осуществляет круглосуточный мониторинг оперативной обстановки на территории Алтайского края и сопредельных регионов в целях предотвращения чрезвычайных ситуаций

• графические материалы

Инфраструктура

Станции приёма космической информации:

ЕОСкан

УниСкан-24

АЛИСА

Принимаемые приборы и спутниковые платформы:

MODIS/Terra

MODIS/Aqua

AIRS/Aqua

VIIRS/SNPP

CrIS/SNPP

ATMS/SNPP

VIIRS/NOAA-20

CrIS/NOAA-20

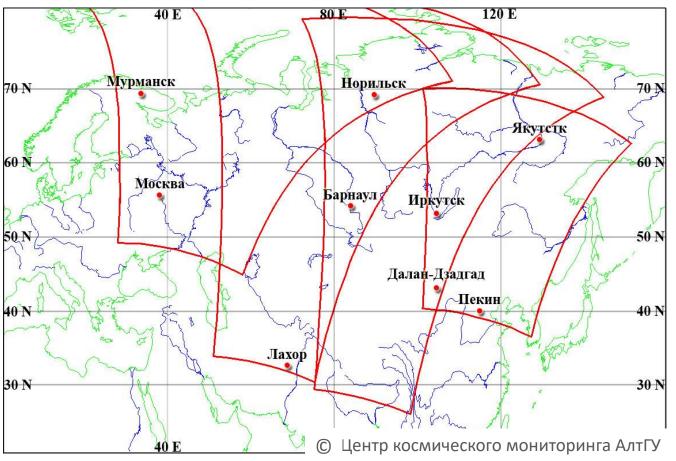
ATMS/NOAA-20

Используемые данные с приборов и спутниковых платформ:

Landsat-8

AMSR2

Sentinel-1A/B


Sentinel-2A/B

Станции приема спутниковой информации

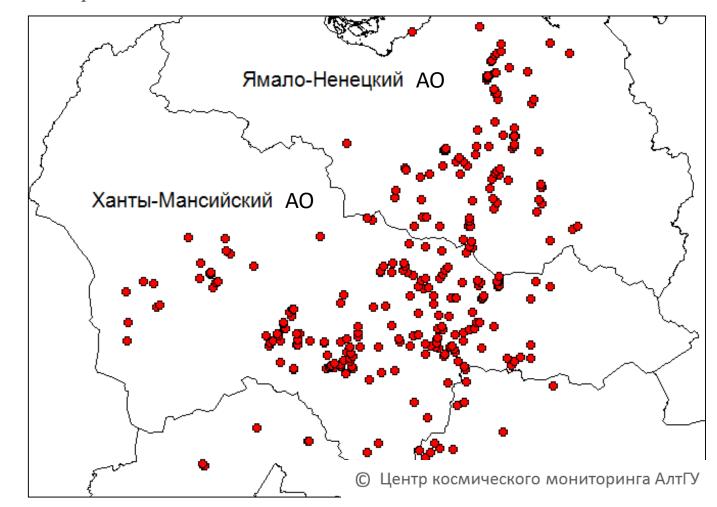
Территория, покрываемая MODIS/Terra

Разработанная сотрудниками Центра космического мониторинга АлтГУ спутниковая технология позволяет дистанционно определять следующие характеристики работы факельных установок:

- температуру сжигаемой смеси
- **Площадь факела**
- мощность источника теплового излучения
- объем сжигаемого газа

Мониторинг осуществляется в ночное время по данным каналов радиометров VIIRS/Suomi-NPP и VIIRS/NOAA-20 в видимом и ближнем/тепловом ИК-диапазонах

Результаты оценки объема сжигаемого попутного нефтяного газа в факельных установках на территории Западной Сибири на основе спутниковой технологии, разработанной Центром космического мониторинга АлтГУ


Период наблюдений		Количество выявленных работающих факельных установок	<u>\$\frac{1}{2}{2}</u>	Объем сжигаемого газа V , млрд. M^3
2013 _	336		15,7	
2015 -	315		14,1	
2017 -	291		14,9	
2019 -	311		14,8	

Пример определения отдельных высокотемпературных термальных аномалий в Ханты-Мансийском АО в 2019 г.

Nº	Широта, °	Долгота, °	Температура, К	Прощадь, м2
1	59,23	74,34	1821	4,7
2	60,30	70,88	1752	5,3
3	60,40	64,53	1826	4,2
4	61,23	75,98	1829	6,8
5	60,47	76,58	1889	0,7
6	60,51	74,10	1797	28,4
7	60,54	72,31	1818	12,0
8	60,63	72,85	1673	2,6
9	60,69	69,82	1859	4,8
10	60,74	70,80	1786	9,9
11	60,78	72,86	1945	1,0
12	60,85	70,08	1813	16,4
13	60,89	70,02	1790	26,3
14	60,90	78,89	1655	6,7
15	60,95	72,40	1932	1,8
16	60,97	73,86	1837	6,6
17	61,00	70,26	1834	12,3
18	61,06	79,60	1689	3,3
19	61,09	73,02	1658	2,4
20	61,10	75,99	1677	3,1
21	61,14	76,53	1673	3,2
22	61,16	74,55	1804	1,9

Пространственное распределение выявленных высокотемпературных термальных аномалий в Ханты-Мансийском АО в 2013 г.

Данные геоинформационной системы Яндекс. Карты источника с координатами 60.31 с. ш., 70.90 в. д.

Данные геоинформационной системы Яндекс. Карты источника с координатами 59.23 с. ш., 74.34 в. д.

Предлагаемые формы сотрудничества:

Сервис оперативного мониторинга факельных установок в целях оценки и контроля объема сжигаемого попутного нефтяного газа на основе разработанной спутниковой технологии

Обучение персонала компании работе с данными космического мониторинга, предоставление исходной информации для самостоятельной обработки данных, предоставление неисключительных прав на использование программно-аппаратных решений для осуществления мониторинга объема сжигаемого попутного нефтяного газа по спутниковым данным

Проведение НИОКТР по заказу компаний нефтегазового сектора в области использования методов и технологий космического мониторинга в районах добычи углеводородного сырья в целях обеспечения экологических требований к организации добычи и сохранения качества природной среды

Лагутин Анатолий Алексеевич,

директор Центра космического мониторинга, заведующий кафедрой радиофизики и теоретической физики ФГБОУ ВО «Алтайский государственный университет», доктор физико-математических наук, профессор

тел. раб. +7(385-2) 296-668 тел. моб. +7-903-990-0638

e-mail: lagutin@theory.asu.ru

Россия, Алтайский край, г. Барнаул, пр-т Ленина, 61

Попов Евгений Сергеевич,

координатор проекта в Офисе проектного управления ФГБОУ ВО «Алтайский государственный университет», кандидат географических наук

тел. моб. +7-913-218-47-66 e-mail: es-popov@mail.ru